Como Se Calcula La Mediana
Media Mediana –

Definición La media es la media aritmética de un conjunto de números. La mediana es un valor numérico que separa la mitad superior de un conjunto de la mitad inferior.
¿Cuándo se utiliza? La media se utiliza para distribuciones normales de números, con una cantidad baja de valores atípicos. La mediana se utiliza generalmente para devolver la tendencia central en el caso de distribuciones numéricas sesgadas.
¿Cómo se calcula? La media se calcula sumando todos los valores y dividiendo la suma entre el número total de valores. La mediana se puede calcular poniendo los números en orden ascendente y luego localizando el número del centro de esa distribución.
Ejemplo: distribución normal
  • 2, 3, 3, 5, 8, 10, 11
  • (2+3+3+5+8+10+11)/7= 6
  • MEDIA = 6
2, 3, 3, 5, 8, 10, 11 MED = 5
Ejemplo: distribución sesgada
  1. 2, 2, 3, 3, 5, 7, 8, 130
  2. (2+2+3+3+5+7+8+130)/8= 20
  3. MEDIA = 20
  • 2, 2, 3, 3, 5, 7, 8, 130
  • (3+5)/2=4
  • MED = 4

¿Cómo calcular la mediana de un número par?

Si el número de datos es impar, la Mediana es el valor de la puntuación que deja por bajo la mitad de los datos. Si el número de datos es par, la Mediana es el promedio de los valores adyacentes a la puntuación que deja por bajo la mitad de los datos.

¿Cómo se calcula la mediana para datos agrupados?

En este artículo Se definirá cómo se encuentra la mediana para datos agrupados paso a paso con ejemplos y fórmulas Accesos rapidos iHaz click en los siguientes enlaces para ir a la sección del artículo que te interesa! La mediana en un conjunto de datos es el número que se encuentra en el centro de la serie cuando los elementos del conjunto están ordenados, ya sea de menor a mayor o de mayor a menor, la mediana no cambia en ninguno de los 2 casos. En términos más simples la mediana es un número central de una serie de datos, el inconveniente con la mediana para datos agrupados es que no se da un número en concreto, por ejemplo se puede tener que el intervalo ]10 – 20] tiene una frecuencia de 4, que significa que hay 4 números entre 10 y 20 y no se sabe cuales son estos números o si se repiten, entonces lo que se hace en la mediana en datos agrupados es determinar un dato estimado en donde puede estar la mediana, por lo tanto es probable que la mediana que se calcule con los datos agrupados no sea siquiera parte de los datos que se recolectaron, pero aun así este valor se tomará como la mediana.

You might be interested:  Como Inscribirse En El Imserso

¿Cuál es la mediana en una tabla de frecuencia?

4.2 Con tablas

Centro comercial, Imagen del en el banco de imágenes del ITE Licencia Creative Commons by-nc-sa

Ya sabes calcular los parámetros centrales de un conjunto de datos. Pero, ¿te servirá lo aprendido en todos los casos? Si quieres saber cuál es el gasto mensual medio que tienes de leche en tu casa, no hay mucha dificultad. Basta hallar la media de los litros de leche que habéis consumido durante los doce meses de un año.

  1. Pero si fueses el gerente de una cadena comercial con miles de empleados y quisieras saber cuál es la edad media de tus empleados, sería más complicado Si recuerdas el ejemplo de los sueldos de apartado anterior, había tres empleados que cobraban 950 euros.
  2. A la hora de hallar la media, podíamos sumar tres veces ese valor o calcular 950·3,

En el caso de tres no parece muy interesante, pero si se repitiera el mismo sueldo 231 sería distinto: no costaría igual tener que sumar 231 veces una misma cantidad en lugar de multiplicarla por 231, Por es,o cuando tenemos muchos datos, los cálculos de los parámetros se realizan a través de la tabla de frecuencia. El cálculo de los parámetros de centralización a través de las tablas de frecuencia se realiza de la siguiente forma: Mediana : como los valores están ordenados en la tabla de frecuencias, el procedimiento consiste en calcular la frecuencia absoluta acumulada.

  • Se divide el número total de datos recogidos ( N ) entre dos.
  • El primer valor cuya frecuencia absoluta acumulada supera a esa cantidad, es el valor mediano.
  • Esto es debido a que si escribiésemos todos los valores ordenados uno detrás de otro, la frecuencia acumulada nos indicaría hasta qué lugares llegaban cada uno de los distintos valores.

Si la mitad de N coincide exactamente con el valor de la frecuencia acumulada de un valor, estaríamos como en el mismo caso del apartado anterior cuando teníamos un número par de valores. En ese caso, la mediana es la semisuma de ese valor y el siguiente.

You might be interested:  Como Recuperar La Voz

Si en lugar de valores de una variable discreta, tuviésemos valores de una variable continua, el proceso es muy similar. En este caso, en lugar de moda se habla de intervalo modal y, de momento, en lugar de mediana hablaremos de intervalo mediano. Para hallar la media, únicamente hay que tener en cuenta que se toma como valor x i de la variable el de la, Aprende a hacerlo

nº de televisores nº de hogares
0 6
1 30
2 28
3 21
4 9
5 6

En el estudio del número de televisores por familia de un barrio se ha recogido la información que se muestra en la tabla. Calcula la moda, la mediana y la media de esos valores. En primer lugar construimos la tabla de frecuencias y le añadimos la columna de las frecuencias acumuladas ( F i ) y la columna de los productos ( f i ·x i ) y añadimos una fila con los totales.

x i f i F i x i ·f i
0 6 6 0
1 30 36 30
2 28 64 56
3 21 85 63
4 9 94 36
5 6 100 30
Totales = 100 215

Moda: Observa que la mayor frecuencia absoluta es 30 correspondiente al valor 1, por tanto la moda es 1, Moda = 1,

Mediana: Tenemos que N=100, por tanto su mitad es 50, Observa que el primer valor en el que se alcanza el valor de 50 en las frecuencias absolutas acumuladas ( F i ) es en el valor x=2 correspondiente a F = 64, Por tanto, la mediana es 2, Me = 2 Media:

En el a un documento OpenOffice.calc puedes ver el cálculo de la media de la actividad anterior. Observa como para totalizar las columnas, se utiliza la función SUMA, Comprueba lo aprendido

Espárragos, Imagen del en el banco de imágenes del ITE Licencia Creative Commons by-nc-sa

Una empresa envasadora de espárragos blancos quiere estudiar la posibilidad de lanzar al mercado envases de dos tamaños. Uno para productos más grandes, lógicamente de mayor precio, y otro para los elementos más pequeños. Para ello hace un estudio aleatorio del tamaño de espárragos que va envasando, obteniendo los siguientes resultados:

Medida en cm. Intervalos Nº de espárragos f i
[7,9) 25
[9,11) 172
[11,13) 311
[13,15) 413
[15,17) 79

Completa la tabla con la frecuencia acumulada, la marca de clase y los valores xi·fi. Después, calcula los parámetros de centralización y contesta a las siguientes preguntas: La tabla completa que habrás obtenido es:

Medida en cm. Intervalos Marca de clase x i Nº de espárragos f i F i x i ·f i
[7,9) 8 25 25 200
[9,11) 10 172 197 1720
[11,13) 12 311 508 3732
[13,15) 14 413 921 5782
[15,17) 16 79 1000 1264
N = 1000 12698
You might be interested:  Boadilla Del Monte Como Llegar

En la siguiente escena puedes realizar algunos ejercicios de cálculo de la media. Puedes practicar varios ejemplos, tanto para variables discretas como continuas. Utiliza el botón “Discreta/Continua” para seleccionar el tipo y pulsa el botón “Genera” para realizar otro ejercicio.

Medias. Escena de en ITE Licencia Creative Commons by-nc-sa

table>

Hemos comentado que la mediana y la media no tienen sentido en las variables cualitativas. No obstante, a veces, para poder sacar esa información incluso en datos no numéricos, lo que se hace es codificar las respuestas. Por ejemplo, a veces te habrás encontrado encuestas en las que, al preguntarte sobre cuál es tu grado de satisfacción con un determinado servicio, te habrán pedido que elijas un número del 1 al 5 (el 1 significa nada satisfecho y el 5 muy satisfecho).

De esa forma se evalúan los datos numéricos correspondientes y se pueden hallar todos los parámetros. Una vez que has llegado a este punto, suponemos que ya dominas los parámetros de centralización. Debes recordar siempre que esos parámetros representan valores alrededor de los cuales se agrupan los datos recogidos en el estudio estadístico.

La moda es donde hay más, la mediana es el punto medio exacto de los datos y la media equivale al centro de gravedad de la distribución de valores. Pero, como es lógico, con esos valores no es suficiente para tener toda la información sobre los datos.

  1. Por si no te ha quedado clara la dificultad de utilizar sólo los parámetros estadísticos centrales imagina un ejemplo.
  2. Hemos preguntado a 15 personas sobre las veces que se conectan al día a Internet fuera de su trabajo y, tras estudiar las respuestas, nos ha salido una media de 3 veces al día, ¿es esa suficiente información? Posiblemente esa sola no nos sirva, ya que puede haber muchos casos.

Por ejemplo, puede darse el caso de que prácticamente todos dediquen el mismo tiempo o que haya unos que dediquen muy poco tiempo y otros mucho. Precisamente por esta dificultad es por lo que necesitaremos más parámetros estadísticos que vamos a desarrollar a continuación.

¿Cómo calcular la moda ejemplo?

Ejemplo 1 : Encuentre la moda del conjunto. El 2, 3, 7, 10 y 12 aparecen una vez cada uno. El 5 aparece dos veces y el 9 aparece tres veces. Así, el 9 es la moda.

¿Qué hace la mediana en un triángulo?

Media (geometría) La mediana divide al triángulo en dos regiones con la misma área. Las tres transversales se intersecan en el baricentro, centro de gravedad del triángulo o centroide.